Аннотация:
Рассматривается производящая $L$-функция Артина $L(z)=L(z,f)=\exp\bigl(\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\bigr)$ для сумм характеров $T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n))$, где $\mathbb F_q$ – конечное поле, $\mathbb F_{q^\nu}$ – его конечное расширение, $\psi_\nu(\alpha)$ – нетривиальный аддитивный характер поля $\mathbb F_{q^\nu}$, $f\in\mathbb F_q[x_1,\dots,x_n]$ – многочлен степени $d\geqslant 2$, и дается элементарное доказательство гипотезы Е. Бомбьери об алгебраической структуре функции $L(z)$ в случае $n=2$.
Библиография: 16 наименований.
Ключевые слова:конечные поля, суммы характеров с многочленами от многих переменных, $L$-функция Артина, гипотеза Бомбьери, поляризованные симметрические многочлены от многих переменных, теорема Варинга о симметрических многочленах.