Аннотация:
Установлено, что в широком классе банаховых пространств (в частности, в сепарабельных) ограниченно компактное $\mathrm{m}$-связное (связное по Менгеру) множество монотонно линейно связно и является солнцем. Показано, что пересечение ограниченно компактного монотонно линейно связного ($\mathrm{m}$-связного) множества с замкнутым шаром клеточноподобно (имеет шейп точки), в частности ациклично (в конечномерном случае – стягиваемо), и является солнцем и что ограниченно слабо компактное $\mathrm{m}$-связное множество монотонно линейно связно. Попутно теорема Рейнуотера–Симонса о слабой сходимости последовательностей распространяется на случай сходимости относительно ассоциированной (по Брауну) нормы.
Библиография: 38 наименований.
Ключевые слова:солнце, ацикличное множество, клеточноподобное множество, монотонно
линейно связное множество, связность по Менгеру, $d$-выпуклость,
выпуклость по Менгеру, теорема Рейнуотера–Симонса.