Аннотация:
Исследуется функционально-разностный оператор $H=U+U^{-1}+V$, где $U$ и $V$ – самосопряженные вейлевские операторы, удовлетворяющие соотношению $UV=q^{2}VU$, $q=e^{\pi i\tau}$, $\tau>0$. Оператор $H$ имеет приложения в конформной теории поля и теории представлений квантовых групп.
При использовании модулярного квантового дилогарифма – $q$-деформации дилогарифма Эйлера – определено решение задачи рассеяния и функции Йоста, выведена явная формула для резольвенты самосопряженного оператора $H$ в гильбертовом пространстве $L^{2}(\mathbb R)$ и доказана теорема разложения по собственным функциям, которая является $q$-деформацией известного в теории специальных функций преобразования Конторовича–Лебедева. Приведена формулировка теории рассеяния для оператора $H$.
Библиография: 24 наименования.
Ключевые слова:модулярный квантовый дилогарифм, вейлевские операторы, функционально-разностный оператор, оператор Шрёдингера, преобразование Фурье, определитель Касорати, формула Сохоцкого–Племеля, решение задачи
рассеяния, решения Йоста, резольвента оператора, разложение по собственным функциям, преобразование Конторовича–Лебедева, теория рассеяния, оператор рассеяния.