Аннотация:
Получены асимптотические формулы для спектральных сегментов тонкой ($h\ll 1$) прямоугольной решетки квантовых волноводов, описываемой задачей Дирихле для оператора Лапласа. Установлено, что общепринятая модель квантового графа с традиционными условиями Кирхгофа в узлах дает неправильное представление о строении спектра решетки. Оказывается, длины спектральных сегментов являются бесконечно малыми $O(e^{-\delta/h})$, $\delta>0$, и $O(h)$ при $h\to+0$, и между ними возникают лакуны с шириной $O(h^{-2})$ и $O(1)$ соответственно в низко- и среднечастотных диапазонах спектра. Первый спектральный сегмент порожден (единственным) собственным числом в дискретном спектре бесконечного крестообразного волновода $\Theta$. Проверенное отсутствие ограниченных решений у задачи в $\Theta$ на пороговой частоте означает, что правильная модель решетки – граф с условиями Дирихле в узлах, распадающийся на два бесконечных набора идентичных звеньев–отрезков. При помощи возмущений конечного набора перемычек построены точки дискретного спектра решетки в любом заданном наперед количестве как ниже существенного спектра, так и внутри лакун.
Библиография: 49 наименований.
Ключевые слова:квантовой волновод, тонкая прямоугольная решетка, задача Дирихле, лакуны, условия сопряжения Кирхгофа, дискретный спектр, асимптотический анализ.