RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2016, том 80, выпуск 2, страницы 16–32 (Mi im8384)

Эта публикация цитируется в 7 статьях

Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер

А. И. Буфетовabcd

a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Национальный исследовательский университет "Высшая школа экономики", г. Москва
c Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва
d Aix-Marseille Université, France

Аннотация: Вторая часть настоящей работы посвящена сходимости последовательностей бесконечных детерминантных мер, понимаемой как сходимость последовательностей отвечающих им конечных детерминантных мер. Кроме слабой топологии в пространстве вероятностных мер на пространстве конфигураций рассматривается также естественное почти наверно (по бесконечному бесселеву процессу) определенное погружение пространства конфигураций в пространство конечных мер на полупрямой и отвечающая ей слабая топология в пространстве конечных мер на пространстве конечных мер на полупрямой. Главные результаты второй части – достаточные условия плотности семейств и сходимости последовательностей индуцированных детерминантных процессов, а также сходимости процессов, отвечающих конечномерным возмущениям операторов.
Библиография: 25 наименований.

Ключевые слова: детерминантные процессы, бесконечные детерминантные меры, эргодическое разложение, бесконечномерный гармонический анализ, бесконечная унитарная группа, скейлинговые пределы, полиномы Якоби, орбитальный интеграл Хариш-Чандры–Ицыксона–Зюбера.

УДК: 517.938+519.21

MSC: 20C32, 22D40, 28D15, 43A05, 60B15, 60G55

Поступило в редакцию: 07.04.2015
Исправленный вариант: 16.10.2015

DOI: 10.4213/im8384


 Англоязычная версия: Izvestiya: Mathematics, 2016, 80:2, 299–315

Реферативные базы данных:


© МИАН, 2024