Аннотация:
Обсуждаются условия существования инвариантных мер гладких динамических
систем на компактных многообразиях. Если существует инвариантная мера с непрерывно дифференцируемой плотностью, то на каждом решении дивергенция векторного поля сходится к нулю по Чезаро при неограниченном возрастании времени. Сходимость по Чезаро здесь можно заменить, например, любым
методом суммирования Рисса, который сколь угодно мало отличается от обычной сходимости (но не совпадает с ней). Приведен пример системы, у которой дивергенция стремится к нулю в обычном смысле, но которая не
допускает инвариантной меры, абсолютно непрерывной относительно “стандартной” меры Лебега на фазовом пространстве, порождаемой некоторой римановой метрикой. Приведен пример аналитической системы дифференциальных уравнений на аналитическом фазовом пространстве, которая допускает
инвариантные меры любой наперед заданной степени гладкости (в том числе и меру с суммируемой плотностью, но при этом не допускает никакой инвариантной меры с положительной непрерывной плотностью). Дано новое доказательство классической теоремы Боголюбова–Крылова, основанное на применении
обобщенных функций и теоремы Хана–Банаха. Обсуждаются также свойства знакопеременных инвариантных мер.
Библиография: 24 наименования.