Аннотация:
Исследуются аппроксимационные свойства сумм $\sum_{k=1}^nf(t-a_k)$ сдвигов одной функции $f$ в действительных пространствах $L_p(\mathbb{T})$ и $C(\mathbb{T})$ на окружности $\mathbb{T}=[0,2\pi)$, а также в комплексных пространствах функций, голоморфных в единичном круге. В терминах тригонометрических коэффициентов Фурье функции $f$ получены условия, достаточные для плотности указанных сумм в соответствующих подпространствах функций с нулевым средним. Исследуется точность этих условий. Предложен простой алгоритм приближения суммами плюс-минус сдвигов одной конкретной функции в $L_2(\mathbb{T})$ и получена оценка скорости приближения.
Библиография: 15 наименований.