RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2018, том 82, выпуск 2, страницы 194–216 (Mi im8589)

Эта публикация цитируется в 3 статьях

Мультинормированные пространства, основанные на недискретных мерах, и их тензорные произведения

А. Я. Хелемский

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Аннотация: Ламбертом был открыт тип структур, находящихся “на полпути” между классическими и квантовыми нормированными пространствами. В основе их определения лежало понятие размножения нормированного пространства с помощью пространств $\ell_2^n$. Впоследствии рядом авторов были изучены более общие структуры, "$p$-мультинормированные пространства", введенные с помощью пространств $\ell_p^n$, $1\le p\le\infty$. В настоящей работе мы переходим от $\ell_p$ к $L_p(X,\mu)$ с произвольными мерами. Это оказалось возможным в рамках бескоординатного подхода к понятию размножения, эквивалентного для случая дискретной считающей меры подходу, принятому в упомянутых статьях. Возникают две категории: размножений c помощью произвольного нормированного пространства и $p$-выпуклых размножений с помощью $L_p(X,\mu)$. Показано, что обе обладают собственным тензорным произведениям для своих объектов, строящихся с помощью своей явной конструкции. Как завершающий результат, показано, что "$p$-выпуклое" тензорное произведение особенно хорошо для минимальных $L_p$-размножений $L_q$-пространств, где $q$ сопряжено к $p$: тензорно перемножая $L_q(Y,\nu)$ и $L_q(Z,\lambda)$, мы получаем $L_q(Y\times Z,\nu\times\lambda)$.
Библиография: 28 наименований.

Ключевые слова: $\mathbf{L}$-пространство, $\mathbf{L}$-ограниченность, общее $\mathbf{L}$-тензорное произведение, $p$-выпуклое тензорное произведение.

УДК: 517.986.22

MSC: 46L07, 46M05

Поступило в редакцию: 11.07.2016
Исправленный вариант: 05.12.2016

DOI: 10.4213/im8589


 Англоязычная версия: Izvestiya: Mathematics, 2018, 82:2, 428–449

Реферативные базы данных:


© МИАН, 2024