RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2019, том 83, выпуск 3, страницы 133–157 (Mi im8739)

Эта публикация цитируется в 1 статье

Asymptotic bounds for spherical codes

Yu. I. Manina, M. Marcollib

a Max–Planck–Institute für Mathematik, Bonn, Germany
b California Institute of Technology, Pasadena, USA

Аннотация: The set of all error-correcting codes $C$ over a fixed finite alphabet $\mathbf{F}$ of cardinality $q$ determines the set of code points in the unit square $[0,1]^2$ with coordinates $(R(C), \delta (C))$:= (relative transmission rate, relative minimal distance). The central problem of the theory of such codes consists in maximising simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in inventing explicit constructions of “good codes” and comparing new classes of codes with earlier ones.
Less classical approach studies the geometry of the whole set of code points $(R,\delta)$ (with $q$ fixed), at first independently of its computability properties, and only afterwards turning to the problems of computability, analogies with statistical physics etc.
The main purpose of this article consists in extending this latter strategy to the domain of spherical codes.
Bibliography: 14 titles.

Ключевые слова: error-correcting codes, asymptotic bounds, spherical codes, sphere packings.

УДК: 519.725+514.174.2

MSC: 94B60, 94B65

Поступило в редакцию: 27.11.2017

DOI: 10.4213/im8739


 Англоязычная версия: Izvestiya: Mathematics, 2019, 83:3, 540–564

Реферативные базы данных:


© МИАН, 2024