RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 1993, том 57, выпуск 2, страницы 51–90 (Mi im878)

Эта публикация цитируется в 20 статьях

Релятивизуемые и нерелятивизуемые теоремы полиномиальной теории алгоритмов

Н. К. Верещагин

Институт новых технологий

Аннотация: Начиная с работы Бейкера, Гилла и Соловея [6], в теории вычислительной сложности был доказан ряд результатов, состоящих в отделении различных релятивизованных классов сложности или в несуществовании в таких классах полных языков. При этом все результаты такого сорта, по существу, были основаны на получении нижних оценок для разрешающих деревьев специального вида или машин с полилогарифмическим ограничением на время работы. Возникает вопрос: являются ли эти методы доказательства “релятивизованных” результатов универсальными? Первая часть настоящей работы как раз и состоит в том, что предлагается общая модель, в которой утверждения об универсальности такого рода можно сформулировать и доказать в виде удобных критериев. Эти критерии позволяют получить в качестве простых следствий некоторых известных результатов о булевских разрешающих деревьях некоторые новые “релятивизованные” результаты, а также новые доказательства некоторых старых результатов. Вторая часть работы состоит в применении найденных общих критериев к большому числу частных случаев. Например, для большого числа ранее изучавшихся в литературе классов полностью описаны все релятивизуемые включения между этими классами.

УДК: 510.52

MSC: 68Q15

Поступило в редакцию: 16.03.1990
Исправленный вариант: 18.11.1991


 Англоязычная версия: Russian Academy of Sciences. Izvestiya Mathematics, 1994, 42:2, 261–298

Реферативные базы данных:


© МИАН, 2024