Аннотация:
Изучаются меры на вещественном сепарабельном гильбертовом пространстве $E$, инвариантые относительно сдвигов на произвольные векторы пространства. Определено гильбертово пространство $\mathcal H$ комплекснозначных функций на пространстве $E$, квадратично интегрируемых по некоторой инвариантной относительно сдвигов мере $\lambda$. Определены математические ожидания операторов сдвига на случайные векторы, распределения которых задаются полугруппами (относительно свертки) гауссовских мер на пространстве $E$. Установлено, что такие математические ожидания образуют полугруппу самосопряженных сжатий в пространстве $\mathcal H$. Получен критерий сильной непрерывности таких полугрупп и исследованы свойства их генераторов, представляющих собой самосопряженные обобщения операторов Лапласа на случай функций бесконечномерного аргумента. Введены аналоги пространств Соболева и пространств гладких функций. Получены условия вложения и плотного вложения пространств гладких функций в пространства Соболева. Введенные функциональные пространства применены в задачах аппроксимации полугрупп математическими ожиданиями от случайных процессов. Изучены свойства рассматриваемых обобщений операторов Лапласа и их дробных степеней.
Библиография: 33 наименования.
Ключевые слова:трансляционно инвариантная мера на гильбертовом пространстве, оператор Лапласа на бесконечномерном пространстве, пространства Соболева, теоремы вложения, случайные блуждания.