Аннотация:
Получены результаты разложения элементов многомерных пространств $L_p\{(0,1]^m\}$, $1\leq p<\infty$, по системам функций, состоящим из сжатий и сдвигов одной функции, с целыми коэффициентами. Приводятся модели использования для приложений полученных результатов, в том числе в многомодулярных пространствах. Приближение элементов пространств $L_p\{(0,1]^m\}$, $1\leq p <\infty$, предложенными методами, обладает свойством сжатия образов, т. е. имеется много коэффициентов, при этом разложении, равных нулю. Эти исследования могут вызвать интерес также у специалистов по передаче и обработке цифровой информации, так как предлагается простой алгоритм приближения элементов пространств $L_p\{(0,1]^m\}$, $1 \leq p < \infty$, с указанными свойствами.
Библиография: 10 наименований.
Ключевые слова:функциональные системы из сжатий и сдвигов одной функции в многомерных пространствах $ L_p \{ (0,1]^m \}$, $1 \leq p < \infty$; многомерные ряды типа Фурье; многомерные ряды типа Фурье с целыми коэффициентами; цифровая обработка информации; цифровая передача информации; целочисленные разложения функций.