Аннотация:
Рассматривается задача минимизации интегрального функционала на решениях управляемой
системы, описываемой нелинейным дифференциальным уравнением в сепарабельном банаховом
пространстве и вариационным неравенством. Это вариационное неравенство определяет
гистерезисный оператор, входом которого является траектория управляемой системы, а выход содержится в правой части дифференциального уравнения, в ограничении на управление и в минимизируемом функционале. Ограничением на управление является многозначное отображение с замкнутыми, невыпуклыми значениями, а интегрант является функцией, невыпуклой по управлению. Наряду с исходной рассматривается задача минимизации интегрального функционала с овыпукленным по управлению интегрантом на решениях управляемой системы с овыпукленным ограничением на управление (релаксационная задача).
Под решением управляемой системы понимается тройка: выход гистерезисного оператора, траектория и управление. Установлена связь между исходной задачей минимизации и релаксационной задачей. Эта связь является аналогом классической теоремы Н. Н. Боголюбова в вариационном исчислении. Изучена также связь между решениями исходной управляемой системы и системы с овыпукленным ограничением на управление. Эту связь обычно называют релаксацией. Для конечномерного пространства доказано существование оптимального решения в релаксационной задаче оптимизации.
Библиография: 24 наименования.
Ключевые слова:теорема Н. Н. Боголюбова, невыпуклый интегрант, невыпуклые ограничения, релаксация, минимизирующая последовательность.