Аннотация:
В данной работе изучаются уточняющие алгоритмы, известные в англоязычной литературе как subdivision schemes, для приближения функций и построения кривых на диадической полупрямой. В классическом случае, для функций на прямой, теория уточняющих алгоритмов широко известна в связи с приложениями в конструктивной теории приближений, теории обработки сигналов, а также для построения фрактальных кривых и поверхностей. Определены и исследованы уточняющие алгоритмы на диадической полупрямой – положительной полупрямой, снабженной стандартной мерой Лебега и операцией поразрядного двоичного сложения, где роль экспонент играют функции Уолша.
Получены необходимые и достаточные условия сходимости уточняющих алгоритмов в терминах спектральных свойств матриц и в терминах гладкости решения соответствующего масштабирующего уравнения. Исследован вопрос о сходимости уточняющих алгоритмов с неотрицательными коэффициентами. Для алгоритмов с четырьмя коэффициентами получены явные критерии сходимости. В качестве вспомогательного результата определены фрактальные кривые на диадической полупрямой и получена формула для их гладкости. Работа снабжена множеством примеров и численных результатов.
Библиография: 18 наименований.