Аннотация:
Изучается клин решений неравенства $A(u) \geqslant 0$, где $A$ – линейный эллиптический оператор порядка $2m$, определенный на функциях $n$ переменных. Для элементов клина устанавливается внутренняя оценка вида $\|u; W_p^{2m-1}(\omega)\| \leqslant C(\omega,\Omega) \|u;L(\Omega)\|$, где $\omega$ – компактная подобласть $\Omega$, $W_p^{2 m-1}(\omega)$ – пространство Соболева, $p (n-1)<n$, $ L(\Omega)$ – пространство Лебега суммируемых функций, константа $C(\omega,\Omega)$ не зависит от функции $u$.
Библиография: 15 наименований.