RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2020, том 84, выпуск 6, страницы 197–222 (Mi im8992)

Эта публикация цитируется в 3 статьях

О равномерном приближении интерполяционными многочленами Лагранжа по матрице узлов Якоби ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ функций ограниченной вариации

А. Ю. Трынинab

a Саратовский государственный университет им. Н. Г. Чернышевского
b Московский центр фундаментальной и прикладной математики

Аннотация: Пусть последовательности $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ удовлетворяют соотношениям $\alpha_n\in\mathbb{R}$, $\beta_n\in\mathbb{R}$, $\alpha_n=o(\sqrt{n/\ln n})$, $\beta_n=o(\sqrt{n/\ln n})$ при $n\to \infty $, а отрезок $[a,b]\subset (0,\pi)$ и функция $f\in C[a,b]$. Доопределим функцию $f$ до $F$ на отрезке $[0,\pi]$ ломаными так, чтобы она, оставаясь непрерывной, исчезала в окрестности концов отрезка $[0,\pi]$. Пусть также функция $f$ и пара последовательностей $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ связаны между собой условием равносходимости. Тогда для того чтобы классические интерполяционные процессы Лагранжа–Якоби $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ равномерно по $\theta $ на $[a,b]$ аппроксимировали функцию $f\in C[a,b]$ достаточно ограниченности вариации функции $V^{b}_{a}(f)<\infty$ на отрезке $[a,b]$. В частности, если последовательности $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ ограничены, то для того чтобы классические интерполяционные процессы Лагранжа–Якоби $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ равномерно по $\theta $ на $[a,b]$ аппроксимировали функцию $f\in C[a,b]$ достаточно ограниченности вариации функции, $V^{b}_{a}(f)<\infty$, на отрезке $[a,b]$.
Библиография: 42 наименования.

Ключевые слова: синк-аппроксимации, интерполяция функций, равномерное приближение, интерполяционные многочлены, ограниченная вариация.

УДК: 517.518.85

MSC: 41A10

Поступило в редакцию: 19.11.2019
Исправленный вариант: 21.01.2020

DOI: 10.4213/im8992


 Англоязычная версия: Izvestiya: Mathematics, 2020, 84:6, 1224–1249

Реферативные базы данных:


© МИАН, 2025