RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 1995, том 59, выпуск 1, страницы 201–224 (Mi im9)

Эта публикация цитируется в 34 статьях

Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic

A. A. Razborov

Institute for Advanced Study, School of Mathematics

Аннотация: We show that if strong pseudorandom generators exist then the statement "$\alpha$ encodes a circuit of size $n^{(\log^*n)}$ for SATISFIABILITY" is not refutable in $S_2^2(\alpha)$. For refutation in $S_2^1(\alpha)$, this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constant-depth circuits, this is shown without using any unproven hardness assumptions.
These results can be also viewed as direct corollaries of interpolation-like theorems for certain “split versions” of classical systems of Bounded Arithmetic introduced in this paper.
Bibliography: 36 titles.

MSC: 03C62

Поступило в редакцию: 21.04.1994

Язык публикации: английский


 Англоязычная версия: Izvestiya: Mathematics, 1995, 59:1, 205–227

Реферативные базы данных:


© МИАН, 2024