Аннотация:
В статье рассматриваются сферические гиперповерхности в $\mathbb{C}^2$ с фиксированным касательным векторным полем Рееба как трехмерные многообразия Сасаки. Устанавливается связь между тремя разными наборами параметров, а именно, тех, которые возникают из представления поля Рееба как автоморфизма сферы Гейзенберга, параметров используемых Стэнтон для описания “жестких сфер”, а также параметров, являющихся коэффициентами нормальных форм уравнений гиперповерхностей. Кроме того, геометрически описывается пространство модулей жестких сфер и устанавливается геометрическое различие между поверхностями Стэнтон и найденными в [1]. Наконец, определяются группы сасакиевых автоморфизмов жестких сфер, среди которых выявляются однородные многообразия.
Библиография: 4 наименования.
Ключевые слова:геометрия многообразий Сасаки, поле Рееба, поверхности Стэнтон.