Аннотация:
В рамках голоморфного варианта метода обратной задачи теории рассеяния показано, что определитель фредгольмова оператора тёплицева типа, возникающего при решении обратной задачи, является целой функцией от пространственной переменной для всех потенциалов, данные рассеяния которых принадлежат классу Жевре с номером, строго меньшим единицы. В качестве следствия установлено, что любое локальное голоморфное решение уравнения Кортевега–де Фриза является (с точностью до постоянного множителя) второй логарифмической производной некоторой целой функции от пространственной переменной. Обсуждается возможный порядок роста этой целой функции. Приведены аналогичные результаты для всех солитонных уравнений параболического типа.
Библиография: 24 наименования.