Аннотация:
Исследуются критерии конечных постоянных $C$ в серии интегральных неравенств, обобщающих неравенство Пуанкаре–Фридрихса и вариационное определение жесткости кручения области по Сен-Венану. Изопериметрическое неравенство Рэлея–Фабера–Крана и неравенство Сен-Венана–Пойа гарантируют существование конечных постоянных $C$ для областей конечного объема. Критерии существования конечной постоянной $C$ для неограниченных областей бесконечного объема известны лишь для плоских односвязных и пространственных выпуклых областей. Доказаны несколько обобщений и усилений известных результатов и получено их распространение на случай $1<p<2$. Приведем формулировку одного из результатов.
Пусть $1\leqslant p <2$ и пусть область $\Omega=\Omega^0\setminus K$, где $K\subset \Omega^0$ – компакт, а $\Omega^0$ является либо плоской областью с равномерно совершенной границей, либо пространственной областью, удовлетворяющей условию внешней сферы. При этих предположениях конечная постоянная $\Lambda_{p-1}(\Omega)$ существует тогда и только тогда, когда конечен интеграл $\int_\Omega\rho^{{2p}/{(2-p)}}(x,\Omega)\,dx$, где $\rho(x,\Omega)$ – расстояние от точки до границы области $\Omega$.
Библиография: 37 наименований.
Ключевые слова:функция расстояния, неравенство Харди, жесткость кручения, основная частота.