RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2022, том 86, выпуск 4, страницы 192–232 (Mi im9135)

О стандартной гипотезе для компактификаций моделей Нерона 4-мерных абелевых многообразий

С. Г. Танкеев

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых

Аннотация: Доказано, что после подъема на некоторое конечное разветвленное накрытие гладкой проективной кривой $C$ стандартная гипотеза Гротендика типа Лефшеца верна для компактификации Кюннемана минимальной модели Нерона 4-мерного абелева многообразия с главной поляризацией над полем рациональных функций кривой $C$, если кольцо эндоморфизмов общего геометрического слоя модели Нерона совпадает с кольцом целых чисел. Все плохие редукции полустабильные и имеют торический ранг 1. Для любых точек $\delta,\delta'\in C$ плохих редукций гипотеза Ходжа об алгебраических циклах верна для произведения $A_\delta\times A_{\delta'}$ абелевых многообразий $A_\delta,A_{\delta'}$ – факторов связных компонент нейтральных элементов специальных слоев минимальной модели Нерона по модулю торических частей.
Библиография: 53 наименования.

Ключевые слова: стандартная гипотеза, абелево многообразие, минимальная модель Нерона, компактификация Кюннемана, гипотеза Ходжа.

УДК: 512.7

MSC: 14C25, 14E30, 14F25, 11G10, 14J35

Поступило в редакцию: 28.12.2020
Исправленный вариант: 03.07.2021

DOI: 10.4213/im9135


 Англоязычная версия: Izvestiya: Mathematics, 2022, 86:4, 797–835

Реферативные базы данных:


© МИАН, 2024