Аннотация:
In this paper, we are concerned with the following Schrödinger–Poisson system
$$
\begin{cases}
-\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu
\dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u&\text{in }\mathbb{R}^3,
\\
-\Delta \phi=u^{2} &\text{in }\mathbb{R}^3,
\end{cases}
$$
where $0< \beta<3$, $6<q<6+2\beta$, $Q(x)$ is a positive continuous function on $\mathbb{R}^3$, $\lambda,\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.
Bibliography: 31 titles.