RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 1, страницы 33–48 (Mi im9244)

Multiple positive solutions for a Schrödinger–Poisson system with critical and supercritical growths

J. Leia, H. Suob

a School of Mathematics and Statistics, Guizhou University, Guiyang, China
b School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, China

Аннотация: In this paper, we are concerned with the following Schrödinger–Poisson system
$$ \begin{cases} -\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu \dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u&\text{in }\mathbb{R}^3, \\ -\Delta \phi=u^{2} &\text{in }\mathbb{R}^3, \end{cases} $$
where $0< \beta<3$, $6<q<6+2\beta$, $Q(x)$ is a positive continuous function on $\mathbb{R}^3$, $\lambda,\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.
Bibliography: 31 titles.

Ключевые слова: Schrödinger–Poisson system, critical exponent, supercritical growth.

УДК: 517.958

MSC: 35B33, 35J50, 35J20

Поступило в редакцию: 19.07.2021
Исправленный вариант: 14.10.2021

Язык публикации: английский

DOI: 10.4213/im9244


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:1, 29–44

Реферативные базы данных:


© МИАН, 2024