RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 1, страницы 3–32 (Mi im9246)

Эта публикация цитируется в 3 статьях

Оснащенные мотивные $\Gamma$-пространства

Г. А. Гаркушаa, И. А. Панинbc, П. А. Остваерdc

a Department of Mathematics, Swansea University, United Kingdom
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
c Department of Mathematics, University of Oslo, Oslo, Norway
d Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy

Аннотация: Собрав воедино несколько вычислительных значимых примеров, мы даем элементарное описание бесконечно-кратных пространств петель и вполне эффективных спектров в контексте мотивной гомотопической теории. Наш подход состоит в том, чтобы включить $\Gamma$-пространства Сигала и оснащенные соответствия Воеводского в единое понятие оснащенного мотивного $\Gamma$-пространства. Последнее – это непрерывный функтор двух переменных, принимающий значение в оснащенных мотивных пространствах. Чтобы сформулировать и доказать наши основные результаты, мы накладываем дополнительные условия на оснащенные мотивные $\Gamma$-пространства, такие как условие Сигала для симплициальных пучков Нисневича, свойства сокращения, $\mathbb{A}^1$- и $\sigma$-инвариантности, вырезания по Нисневичу, стягиваемости по Суслину и группо-подобности.
Библиография: 36 наименований.

Ключевые слова: оснащенные соответствия, $\Gamma$-пространства, мотивные пространства, оснащенные мотивные $\Gamma$-пространства, связные и очень эффективные мотивные спектры, бесконечно-кратные мотивные пространства петель.

УДК: 512.73+514.7+515.14

MSC: 14F42, 55N30, 55P42

Поступило в редакцию: 11.07.2021
Исправленный вариант: 19.11.2021

DOI: 10.4213/im9246


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:1, 1–28

Реферативные базы данных:


© МИАН, 2024