RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 2, страницы 56–68 (Mi im9285)

Эта публикация цитируется в 1 статье

On the transference principle and Nesterenko's linear independence criterion

O. N. Germanab, N. G. Moshchevitinab

a National Research University Higher School of Economics, Moscow
b Moscow Center for Fundamental and Applied Mathematics

Аннотация: We consider the problem of simultaneous approximation of real numbers $\theta_1,\dots,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+\dots+\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and “one half” of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independence criterion.
Bibliography: 19 titles.

Ключевые слова: Diophantine approximation, Diophantine exponents, transference inequalities, linear independence criterion.

УДК: 511.4

MSC: 11H06, 11J82

Поступило в редакцию: 08.11.2021
Исправленный вариант: 26.07.2022

Язык публикации: английский

DOI: 10.4213/im9285


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:2, 252–264

Реферативные базы данных:


© МИАН, 2024