RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 5, страницы 140–163 (Mi im9336)

On the positivity of direct image bundles

Zhi Lia, Xiangyu Zhoubc

a School of Science, Beijing University of Posts and Telecommunications, Beijing, China
b Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
c Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China

Аннотация: In the present paper, we obtain an equivalent relation between the log-plurisubharmonicity of the relative Bergman kernel, the Griffiths and Nakano positivity for the direct image with the natural $L^2$ metric, by finding a converse of Berndtsson's theorem on the direct image. A converse of Berndtsson's generalization of Kiselman minimal principle is also obtained.
Bibliography: 30 titles.

Ключевые слова: $L^2$-methods, plurisubharmonic functions, direct images, positive hermitian holomorphic vector bundles, minimal principles, relative Bergman kernel.

УДК: 517.550.7+517.553+517.554

MSC: 32D15, 32L15, 32A25, 32U05

Поступило в редакцию: 22.03.2022
Исправленный вариант: 17.04.2022

Язык публикации: английский

DOI: 10.4213/im9336


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:5, 987–1010

Реферативные базы данных:


© МИАН, 2024