RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 5, страницы 232–270 (Mi im9337)

Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve

S. S.-T. Yauab, Qiwei Zhua, Huaiqing Zuoa

a Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
b Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Huairou, P. R. China

Аннотация: Let $(V, p)$ be a normal surface singularity. Let $\pi\colon (M, A)\to (V, p)$ be a minimal good resolution of $V$. The weighted dual graphs $\Gamma$ associated to $A$ completely describes the topology and differentiable structure of the embedding of $A$ in $M$. In this paper, we classify all the weighted dual graphs of $A=\bigcup_{i=1}^n A_i$ such that one of the curves $A_i$ is $-3$-curve, and the rest are all $-2$-curves. This is a natural generalization of Artin's classification of rational triple points. Moreover, we compute the fundamental cycles of maximal graphs (see Section 5) which can be used to determine whether the singularities are rational, minimally elliptic or weakly elliptic. We also give the formulas for computing arithmetic and geometric genera of star-shaped graphs.
Bibliography: 28 titles.

Ключевые слова: normal singularities, topological classification, weighted dual graph.

УДК: 515.16

MSC: 14J17, 14B05, 32S25, 58K65

Поступило в редакцию: 22.03.2022
Исправленный вариант: 21.09.2022

Язык публикации: английский

DOI: 10.4213/im9337


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:5, 1078–1116

Реферативные базы данных:


© МИАН, 2024