Аннотация:
Дается ответ на вопрос М. Лори и Б. Стейнберга о разрешимости проблемы вхождения в подмоноиды конечно порожденной нильпотентной группы. А именно, строится конечно порожденный подмоноид свободной нильпотентной группы ступени $2$ достаточно большого ранга $r$, проблема вхождения в который алгоритмически неразрешима. Отсюда следует существование подмоноида с аналогичным свойством в любой свободной нильпотентной группе ступени $l \geqslant 2$ ранга $r$. Доказательство основывается на неразрешимости десятой проблемы Гильберта.
Библиография: 28 наименований.
Ключевые слова:проблема вхождения в подмоноид, нильпотентная группа, десятая проблема Гильберта, интерпретируемость уравнений в группах.