Аннотация:
Решена смешанная краевая задача с произвольными непрерывными, необязательно удовлетворяющими граничным условиям, функциями в начальных условиях и неоднородности уравнения. Предложен метод нахождения обобщенного решения с помощью модификации операторов интерполирования функций, построенных с помощью решений задач Коши с дифференциальным выражением второго порядка. Найдены способы нахождения коэффициентов Фурье вспомогательных функций с помощью интеграла Стилтьеса или резольвенты дифференциального оператора Коши третьего порядка.
Библиография: 39 наименований.
Ключевые слова:краевая задача, обобщенное решение, метод разделения переменных.