RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 6, страницы 150–166 (Mi im9379)

Эта публикация цитируется в 2 статьях

New approaches to $\mathfrak{gl}_N$ weight system

Zhuoke Yang

International Laboratory of Cluster Geometry, National Research University ``Higher School of Economics'' (HSE), Moscow

Аннотация: The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra $\mathfrak{gl}_N$. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the non-commutative universal enveloping algebra, in spite of the fact that the result belongs to the centre of the latter. The first approach is based on M. Kazarian's proposal to define an invariant of permutations taking values in the centre of the universal enveloping algebra of $\mathfrak{gl}_N$. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the $\mathfrak{gl}_N$ weight system on this chord diagram. We describe the recursion allowing one to compute the $\mathfrak{gl}_N$ invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras $\mathfrak{gl}_N$. This isomorphism identifies the centre of the universal enveloping algebra $\mathfrak{gl}_N$ with the ring $\Lambda^*(N)$ of shifted symmetric polynomials in $N$ variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than non-commutative one.
Bibliography: 18 titles.

Ключевые слова: weight system, finite type invariants, chord diagram.

УДК: 515.162.8

MSC: Primary 17B05, 17B10, 57M25, 05C75, 16T30; Secondary 57K16

Поступило в редакцию: 16.05.2022
Исправленный вариант: 09.10.2022

Язык публикации: английский

DOI: 10.4213/im9379


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:6, 1255–1270

Реферативные базы данных:


© МИАН, 2024