RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 3, страницы 23–55 (Mi im9386)

Эта публикация цитируется в 1 статье

Когерентные пучки, классы Чженя и суперсвязности на компактных комплексно-аналитических многообразиях

А. И. Бондалabc, А. А. Рослыйdef

a Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
b Центр фундаментальной математики, Московский физико-технический институт (национальный исследовательский университет), г. Долгопрудный, Московская обл.
c Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Japan
d Сколковский институт науки и технологий, г. Москва
e Институт проблем передачи информации им. А. А. Харкевича Российской академии наук, г. Москва
f Национальный исследовательский университет "Высшая школа экономики", г. Москва

Аннотация: Мы строим твист-замкнутое оснащение ограниченной производной категории $\mathcal{D}^b_{\mathrm{coh}} (X)$ комплексов $\mathcal{O}_X$-модулей с когерентными когомологиями с помощью DG-категории $\overline\partial$-суперсвязностей. Мы используем технику $\overline\partial$-суперсвязностей, чтобы определить классы Чженя и классы Ботта–Чженя для объектов этой категории, в частности, для когерентных пучков.
Библиография: 32 наименования.

Ключевые слова: когерентные пучки, производная категория, DG-категория, оператор Дольбо, суперсвязность.

УДК: 512.732.2

MSC: 14F43, 14F05

Поступило в редакцию: 06.06.2022

DOI: 10.4213/im9386


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:3, 439–468

Реферативные базы данных:


© МИАН, 2024