RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2023, том 87, выпуск 5, страницы 5–40 (Mi im9389)

Fermions from classical probability and statistics defined by stochastic independence

L. Accardia, Yu. G. Lub

a Centro Vito Volterra, Università di Roma Tor Vergata, Roma, Italy
b Dipartimento di Matematica, Università degli Studi di Bari, Bari, Italy

Аннотация: The case study of fermions and the attempt to deduce their structure from classical probability opens new ways for classical and quantum probability, in particular, for the notion of stochastic coupling which, on the basis of the example of fermions, we enlarge to the notion of algebraic coupling, and for the various notions of stochastic independence. These notions are shown to be strictly correlated with algebraic and stochastic couplings. This approach allows to expand considerably the notion of open system. The above statements will be illustrated with some examples. The last section shows how, from these new stochastic couplings, new statistics emerge alongside the known Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics.
Bibliography: 5 titles.

Ключевые слова: fermions, Pauli exclusion principle, stochastic independences, algebraic constraints.

УДК: 536.931

MSC: 82C10, 46N50, 81S20, 81T70

Поступило в редакцию: 12.06.2022
Исправленный вариант: 07.09.2022

Язык публикации: английский

DOI: 10.4213/im9389


 Англоязычная версия: Izvestiya: Mathematics, 2023, 87:5, 855–890

Реферативные базы данных:


© МИАН, 2024