RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2024, том 88, выпуск 2, страницы 5–32 (Mi im9450)

Эта публикация цитируется в 1 статье

A class of evolution differential inclusion systems

Jing Zhaoa, Zhenhai Liubc, N. S. Papageorgioud

a School of Mathematics and Quantitative economics, Guangxi University of Finance and Economics, Nanning, Guangxi, P. R. China
b Center for Applied Mathematics of Guangxi, Guangxi Minzu University, Nanning, Guangxi, P. R. China
c Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin, P. R. China
d Department of Mathematics, National Technical University, Athens, Greece

Аннотация: The main purpose of this paper is to study an abstract system which consists of a non-linear differential inclusion with $C_0$-semigroups and history-dependent operators combined with an evolutionary non-linear inclusion involving pseudomonotone operators, which contains several interesting problems as special cases. We first introduce a hybrid iterative system by using the Rothe method, pseudomonotone operators theory, and a feedback iterative technique. Then, the existence and a priori estimates for solutions to a series of approximating discrete problems are established. Furthermore, through a limiting procedure for solutions of the hybrid iterative system, we show that the existence of solutions to the original problem.

Ключевые слова: integro-differential inclusion systems, $C_0$-semigroup, pseudomonotone, Rothe method, feedback iterative technique.

УДК: 517.9

MSC: 35R12, 49J15, 93B52

Поступило в редакцию: 12.12.2022

Язык публикации: английский

DOI: 10.4213/im9450


 Англоязычная версия: Izvestiya: Mathematics, 2024, 88:2, 197–224

Реферативные базы данных:


© МИАН, 2024