RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2024, том 88, выпуск 6, страницы 190–226 (Mi im9488)

On $T$-maps and ideals of antiderivatives of hypersurface singularities

Quan Shiab, Stephen S.-T. Yauca, Huaiqing Zuoa

a Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
b Zhili College, Tsinghua University, Beijing, P. R. China
c Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, P. R. China

Аннотация: Mather–Yau's theorem leads to an extensive study about moduli algebras of isolated hypersurface singularities. In this paper, the Tjurina ideal is generalized as $T$-principal ideals of certain $T$-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a $T$-map, which creates many new invariants. Firstly, we compute two new invariants associated with ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial growth of these invariants.
Secondly, the language of $T$-maps is applied to generalize the well-known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to that of its principal part. Finally, we use the $T$- fullness and $T$-dependence conditions to determine whether an ideal is a $T$-principal ideal and provide a constructive way of giving a generator of a $T$-principal ideal. As a result, the problem about reconstruction of a hypersurface singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues in the cases of the $0$th and $1$st moduli algebra, which inspired our solution.
Bibliography: 24 titles.

Ключевые слова: isolated singularities, local rings, Kähler differential, semi quasi-homogeneous singularities, Tjurina ideals.

УДК: 512.761.5

MSC: 14B07, 32S05

Поступило в редакцию: 24.04.2023
Исправленный вариант: 05.03.2024

Язык публикации: английский

DOI: 10.4213/im9488



© МИАН, 2024