RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2024, том 88, выпуск 4, страницы 204–224 (Mi im9499)

Asymptotic stability of solutions to quasilinear damped wave equations with variable sources

Xiaoxin Yang, Xiulan Wu, Jibao Zhuang

School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun, P. R. China

Аннотация: In this paper, we consider the following quasilinear damped hyperbolic equation involving variable exponents:
$$ u_{tt}-\operatorname{div}\bigl( |\nabla u|^{r(x)-2}\nabla u\bigr)+|u_t|^{m(x)-2} u_t-\Delta u_t=|u|^{q(x)-2}u, $$
with homogenous Dirichlet initial boundary value condition. An energy estimate and Komornik's inequality are used to prove uniform estimate of decay rates of the solution. We also show that $u(x, t)=0$ is asymptotic stable in terms of natural energy associated with the solution of the above equation. As we know, such results are seldom seen for the variable exponent case. At last, we give some numerical examples to illustrate our results.

Ключевые слова: Komornik inequality, $r(x)$-Laplacian operator, damped quasilinear, variable exponent.

УДК: 517.95

MSC: 35L71, 35L20, 35D30, 35B44

Поступило в редакцию: 15.05.2023
Исправленный вариант: 16.11.2023

Язык публикации: английский

DOI: 10.4213/im9499


 Англоязычная версия: Izvestiya: Mathematics, 2024, 88:4, 794–814

Реферативные базы данных:


© МИАН, 2024