On Grothendieck–Serre conjecture in mixed characteristic for $\operatorname{SL}_{1,D}$
I. A. Panin St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Аннотация:
Let
$R$ be an unramified regular local ring of mixed characteristic,
$D$ an Azumaya
$R$-algebra,
$K$ the fraction field of
$R$, $\operatorname{Nrd}\colon D^{\times} \to R^{\times}$ the reduced norm homomorphism. Let
$a \in R^{\times}$ be a unit. Suppose the equation
$\operatorname{Nrd}=a$ has a solution over
$K$, then it has a solution over
$R$.
Particularly, we prove the following. Let
$R$ be as above and
$a$,
$b$,
$c$ be units in
$R$. Consider the equation
$T^2_1-aT^2_2-bT^2_3+abT^2_4=c$. If it has a solution over
$K$, then it has a solution over
$R$.
Similar results are proved for regular local rings, which are geometrically regular over a discrete valuation ring. These results extend result proven in [23] to the mixed characteristic case.
Bibliography: 29 titles.
Ключевые слова:
Azumaya algebra, reduced norm,
$K$-groups, Gersten complex, mixed characteristic.
УДК:
512.74+
512.723
MSC: 20G10,
19D99 Поступило в редакцию: 11.10.2024
Исправленный вариант: 20.10.2024
Язык публикации: английский
DOI:
10.4213/im9661