Аннотация:
Описана индефинитная структура квантового стохастического (КС) исчисления в пространстве Фока, развитого Хадсоном и Партасарати, и дано определение квантового стохастического интеграла как непрерывного оператора на проективном пределе фоковских пространств. Найдены дифференциальные условия КС исчисления входных–выходных КС процессов и неразрушающих измерений, и доказано, что условие неразрушаемости является необходимым и достаточным для существования условных ожиданий относительно подалгебры наблюдаемых и любого вектора состояния. Развито стохастическое исчисление апостериорных (условных) ожиданий квантовых неразрушаемых процессов, и выведено общее стохастическое уравнение квантовой нелинейной фильтрации как в картине Гейзенберга (для апостериорных операторов), так и в картине Шредингера (для апостериорной матрицы плотности и волновой функции). Показано, что апостериорная динамика, в отличие от априорной, не смешивает состояния, если неразрушающее измерение является полным.
Библ. 21.