Аннотация:
В работе исследуется задача Коши для дифференциального уравнения с производными от функционалов в банаховых пространствах. Оператор при старшей производной имеет структуру проектора, т.е. его ядро бесконечномерно. Решение строится в пространстве обобщенных функций с ограниченным слева носителем в виде свертки фундаментального решения дифференциального оператора с правой частью уравнения, включающей в себя свободную функцию и начальные условия исходной задачи. Построение фундаментального решения осуществляется с помощью фундаментальной оператор-функции для специально выстроенного матричного дифференциального оператора с необратимой (вообще говоря) матрицей при производной, т.е. с оператором конечного индекса. Анализ построенного таким образом обобщенного решения позволяет получать достаточные условия разрешимости исходной задачи Коши в классах функций конечной гладкости, а также предложить конструктивные формулы для восстановления такого решения. Приведен иллюстрирующий пример.