RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2022, том 212, страницы 139–148 (Mi into1042)

Эта публикация цитируется в 6 статьях

Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. II. Общий класс динамических систем на касательном расслоении многомерной сферы

М. В. Шамолин

Московский государственный университет имени М. В. Ломоносова

Аннотация: Работа является второй частью обзора по вопросам интегрируемости систем с любым числом $n$ степеней свободы (первая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 211. — С. 41–74). Обзор состоит из трех частей. В первой части подробно изложена порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил. В данной второй части рассмотрены более общие динамические системы на касательных расслоениях к $n$-мерной сфере. В третьей части, которая будет опубликована в следующем выпуске, рассмотрены динамические системы на касательных расслоениях к достаточно обширному классу других гладких многообразий. Доказаны теоремы о достаточных условиях интегрируемости рассматриваемых динамических систем в классе трансцендентных функций.

Ключевые слова: динамическая система с большим числом степеней свободы, интегрируемость, трансцендентный первый интеграл.

УДК: 517.9; 531.01

MSC: 34Cxx, 70Cxx

DOI: 10.36535/0233-6723-2022-212-139-148



© МИАН, 2024