Аннотация:
Получены необходимые и достаточные условия существования единственного решения задачи Шоуолтера – Сидорова – Дирихле для одного полулинейного уравнения соболевского типа второго порядка. Для рассматриваемой начально-краевой задачи построено приближенное решение по методу Галеркина в виде разложения по системе собственных функций однородной задачи Дирихле для оператора Лапласа. Доказательство $*$-слабой сходимости галеркинских приближений к точному решению основано на априорных оценках, теоремах вложения и лемме Гронуолла.
Ключевые слова:уравнение соболевского типа, задача Шоуолтера—Сидорова, метод Галеркина, $*$-слабая сходимость.