Аннотация:
Обзор посвящен описанию статистических свойств множества случайно распределенных в пространстве изолированных точек, являющихся узлами одной (или семейства независимых) реализации марковской цепи. Целью анализа этой модели является изучение условий возникновения кластеров в множестве этих узлов и описание их характеристик. В данной (первой) части обзора вводятся основные понятия статистики точечных распределений: производящие функционалы, многочастичные плотности, факториальные моменты, марковские цепи, корреляционные функции. Часть заканчивается описанием одномерных самоподобных (в статистическом смысле) множеств, генерируемых дробно-пуассоновским случайным процессом, и демонстрацией явления кластеризации.