RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2024, том 234, страницы 159–169 (Mi into1303)

О точном решении уравнений эволюции для двух взаимодействующих узких волновых пакетов, распространяющихся в неабелевой плазме

Ю. А. Марков, М. А. Маркова, Н. Ю. Марков

Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук, г. Иркутск

Аннотация: Выписана самосогласованная система кинетических уравнений больцмановского типа, учитывающая эволюцию по времени $t$ мягких возбуждений неабелевой плазмы и среднего значения цветного заряда при взаимодействии высокоэнергичной цветозаряженной частицы с плазмой. На основе этих уравнений рассмотрена модельная задача взаимодействия двух бесконечно узких волновых пакетов. Получена система нелинейных обыкновенных дифференциальных уравнений первого порядка, определяющая динамику взаимодействия бесцветной $N^{l}_{\mathbf \kappa}$ и цветовой $W^{l}_{\mathbf \kappa}$ компонент плотности числа коллективных бозонных возбуждений. В силу автономности правых частей данная система сведена к одному нелинейному дифференциальному уравнению типа Абеля второго рода. Показано, что при определенном соотношении между постоянными, входящими в данное нелинейное уравнение, можно получить точное решение в параметрическом виде.

Ключевые слова: кинетическое уравнение, неабелева плазма, волновой пакет, уравнение Абеля второго рода, функция Ламберта

УДК: 517.923

MSC: 34C14

DOI: 10.36535/2782-4438-2024-234-159-169



© МИАН, 2024