Аннотация:
Рассматривается задача построения функционала потерь на основе квазиклассического вариационного принципа для обучения нейронной сети, аппроксимирующей решения гиперболического уравнения. При помощи метода симметризующего оператора В. М. Шалова построен вариационный функционал краевой задачи для гиперболического уравнения второго порядка, содержащий интегралы по области краевой задачи и фрагменту ее границы, зависящие от производных первого порядка неизвестной функции. Показано, что нейронная сеть, аппроксимирующая решение рассматриваемой краевой задачи, может быть обучена с применением построенного вариационного функционала.