RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2018, том 151, страницы 37–44 (Mi into338)

Эта публикация цитируется в 5 статьях

Аналоги меры Лебега в пространствах последовательностей и классы интегрируемых по ним функций

Д. В. Завадский

Московский физико-технический институт (государственный университет)

Аннотация: Изучаются трансляционно-инвариантные меры на банаховых пространствах $l_p$, где $p\in[1,\infty]$. Построены аналоги меры Лебега на борелевских $\sigma$-алгебрах, порожденных топологией поточечной сходимости ($\sigma$-аддитивные, инвариантные относительно сдвигов на произвольные векторы, регулярные меры). Показано, что данные меры не являются $\sigma$-конечными. Исследованы пространства интегрируемых по построенным мерам функции и показано, что такие пространства не являются сепарабельными. Изучены различные плотные подпространства в пространствах функций, интегрируемых по трансляционно инвариантной мере. Указано пространство непрерывных функций, которое является плотным в рассматриваемых функциональных пространствах. Рассматриваются борелевские $\sigma$-алгебры, отвечающие различным топологиям в пространствах $l_p$, где $p\in[1,\infty]$. При $p\in [1, \infty)$ установлено равенство борелевских $\sigma$-алгебр, отвечающих некоторым естественным топологиям в данных пространствах последовательностей, борелевской $\sigma$-алгебре, отвечающей топологии поточечной сходимости. Показано, что в случае пространства $l_\infty$ аналогичные свойства не выполняются.

Ключевые слова: трансляционно инвариантная мера, топология поточечной сходимости, борелевская $\sigma$-алгебра, пространства интегрируемых функций, аппроксимация интегрируемых функций непрерывными.

УДК: 517.982, 517.983

MSC: 28C20, 81Q05, 47D08


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2021, 252:1, 36–42

Реферативные базы данных:


© МИАН, 2024