Аннотация:
Работа посвящена исследованию разрешимости краевых задач для дифференциальных уравнений вида
$$
(\alpha_0(t)+\alpha_1(t)\Delta)u_{tt}-Bu_t-Cu=f(x,t),
$$
в которых $\Delta$ – оператор Лапласа, действующий по пространственным переменным, $B$ и $C$ – также дифференциальные операторы второго порядка, действующие по пространственным переменным. Особенностью рассматриваемых уравнений является то, что какая-либо знакоопределенность функций $\alpha_0(t)$ и $\alpha_1(t)$ на интервале $(0,T)$ изменения временной переменной не требуется; в частности, оператор $\alpha_0(t)+\alpha_1(t)\Delta$ в любых точках интервала $(0,T)$, в том числе и на любых строго внутренних отрезках, может быть необратимым. Для изучаемых задач доказаны теоремы существования и единственности регулярных (т.е. имеющих все обобщенные по С. Л. Соболеву производные, входящие в уравнение) решений.