Аннотация:
Рассмотрена задача оптимального управления для системы, описанной с помощью линейного уравнения в частных производных параболического типа с граничными условиями второго рода. Зафиксированы некоторые ограничения на управления. Функционал качества имеет интегральную форму. Время управления $T$ зафиксировано. Начальное условие не определяется известной функцией, оно принадлежит некоторому множеству (неполная информация о начальном положении). Для получения условий оптимальности в задаче Неймана использовалось обобщение теоремы Дубовицкого—Милютина. Задача, сформулированная в данной статье, описывает процесс оптимального нагрева, для которого не известна точная информация о начальной температуре нагреваемого объекта. Также представлен пример, в котором допустимые управления и одно из начальных условий заданы с помощью ограничений на норму.
Ключевые слова:оптимальная задачв управления, задача Неймана, параболический оператор второго порядка, теорема Дубовицкого—Милютина, коническая аппроксимация, условия оптимальности.