Аннотация:
В статье исследуется задача оптимального управления гиперболической системой с дифференциальными связями на границе с учетом запаздывания. Управляющие воздействия выбираются из класса гладких функций, удовлетворяющих поточечным ограничениям. Задачи такого рода возникают, в частности, при моделировании процессов динамики популяций. Предложенный подход основан на использовании «внутренней вариации» управления, сохраняющей гладкость управляющей функции и обеспечивающей выполнение поточечных ограничений. Получена оценка приращения состояния, доказано необходимое условие оптимальности и разработана схема итерационного метода.
Ключевые слова:гиперболическая система, система с запаздыванием, необходимое условие оптимальности, гладкое управление.