RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2021, том 191, страницы 29–37 (Mi into763)

Аппроксимации в задаче устойчивости линейных периодических систем с последействием

Ю. Ф. Долгийab, Р. И. Шевченкоa

a Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
b Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: Асимптотическая устойчивость линейной периодической системы дифференциальных уравнений с последействием определяется расположением спектра бесконечномерного вполне непрерывного оператора монодромии. Аналитическое представление такого оператора удается получить только для систем специального вида. В численных методах используются конечномерные аппроксимации оператора монодромии. В работе исследуется предложенная Н. Н. Красовским процедура аппроксимации системы дифференциальных уравнений с последействием системами обыкновенных дифференциальных уравнений большой размерности. В гильбертовом пространстве состояний периодической системы с последействием построены конечномерные аппроксимации для оператора монодромии. Доказана теорема, что при росте размерности конечномерных приближений точность аппроксимации оператора монодромии увеличивается.

Ключевые слова: система с последействием, устойчивость движения, конечномерная аппроксимация.

УДК: 517.929

MSC: 39B82

DOI: 10.36535/0233-6723-2021-191-29-37



© МИАН, 2024