Аннотация:
В современной геометрии большое значение имеет изучение геометрий максимальной подвижности. Некоторые из таких геометрий изучены хорошо (геометрии Евклида и Лобачевского, псевдоевклидова, симплектическая, сферическая геометрия и др.), в то время как другие (гельмгольцевы, псевдогельмгольцевы и др.) еще не привлекали активного внимания исследователей. Полной классификации геометрий максимальной подвижности пока нет. В данной работе приведены результаты решения классификационной задачи для двумерных и трехмерных геометрий локальной максимальной подвижности. Эта задача решается методом вложения в классе аналитических функций и сводится к решению функциональных уравнений специального вида.
Ключевые слова:geometry of maximum mobility, motion group, functional equation.