Аннотация:
Рассмотрена проблема нахождения решений нелинейного уравнения теплопроводности со степенной нелинейностью, которые имеют вид бегущей волны и моделируют распространение возмущений по холодному фону с конечной скоростью. Показано, что построение может быть сведено к задаче Коши для обыкновенного дифференциального уравнения второго порядка с особенностью перед старшей производной, для которой доказана теорема существования и единственности гладкого решения. Разработан алгоритм построения приближенного решения на основе метода граничных элементов. Проведен вычислительный эксперимент, получены численные оценки параметров решения.
Ключевые слова:нелинейное уравнение теплопроводности, точное решение, теорема существования и единственности, ряд, сходимость, метод граничных элементов.