Аннотация:
Доказано несколько критериев непрерывности функций ограниченной $\Phi$-вариации, принадлежащих пространствам $L^q$ на $\mathbb{R}$. Первый результат связывает непрерывность функции с поведением ее преобразования Фурье, во втором используется модуль непрерывности в $\Psi(L)$, тогда как в третьем результате рассматривается степень приближения частными интегралами Фурье. Теоремы 1 и 3 в случае $\Phi(u)=|u|^p$, $1\le p<\infty$, были получены ранее первым автором.